Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2104, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747023

RESUMO

Rate-induced tipping (R-tipping) describes the fact that, for multistable dynamic systems, an abrupt transition can take place not only because of the forcing magnitude, but also because of the forcing rate. In the present work, we demonstrate through the case study of a piecewise-linear oscillator (PLO), that increasing the rate of forcing can make the system tip in some cases but might also prevent it from tipping in others. This counterintuitive effect is further called non-monotonous R-tipping (NMRT) and has already been observed in recent studies. We show that, in the present case, the reason for NMRT is the peak synchronisation of oscillatory responses operating on different time scales. We further illustrate that NMRT can be observed even in the presence of additive white noise of intermediate amplitude. Finally, NMRT is also observed on a van-der-Pol oscillator with an unstable limit cycle, suggesting that this effect is not limited to systems with a discontinuous right-hand side such as the PLO. This insight might be highly valuable, as the current research on tipping elements is shifting from an equilibrium to a dynamic perspective while using models of increasing complexity, in which NMRT might be observed but hard to understand.

2.
Nat Commun ; 8: 16008, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28681860

RESUMO

Palaeo data suggest that Greenland must have been largely ice free during Marine Isotope Stage 11 (MIS-11). However, regional summer insolation anomalies were modest during this time compared to MIS-5e, when the Greenland ice sheet likely lost less volume. Thus it remains unclear how such conditions led to an almost complete disappearance of the ice sheet. Here we use transient climate-ice sheet simulations to simultaneously constrain estimates of regional temperature anomalies and Greenland's contribution to the MIS-11 sea-level highstand. We find that Greenland contributed 6.1 m (3.9-7.0 m, 95% credible interval) to sea level, ∼7 kyr after the peak in regional summer temperature anomalies of 2.8 °C (2.1-3.4 °C). The moderate warming produced a mean rate of mass loss in sea-level equivalent of only around 0.4 m per kyr, which means the long duration of MIS-11 interglacial conditions around Greenland was a necessary condition for the ice sheet to disappear almost completely.

3.
Proc Natl Acad Sci U S A ; 114(25): 6533-6538, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28584113

RESUMO

The acceleration of ice sheet melting has been observed over the last few decades. Recent observations and modeling studies have suggested that the ice sheet contribution to future sea level rise could have been underestimated in the latest Intergovernmental Panel on Climate Change report. The ensuing freshwater discharge coming from ice sheets could have significant impacts on global climate, and especially on the vulnerable tropical areas. During the last glacial/deglacial period, megadrought episodes were observed in the Sahel region at the time of massive iceberg surges, leading to large freshwater discharges. In the future, such episodes have the potential to induce a drastic destabilization of the Sahelian agroecosystem. Using a climate modeling approach, we investigate this issue by superimposing on the Representative Concentration Pathways 8.5 (RCP8.5) baseline experiment a Greenland flash melting scenario corresponding to an additional sea level rise ranging from 0.5 m to 3 m. Our model response to freshwater discharge coming from Greenland melting reveals a significant decrease of the West African monsoon rainfall, leading to changes in agricultural practices. Combined with a strong population increase, described by different demography projections, important human migration flows could be potentially induced. We estimate that, without any adaptation measures, tens to hundreds million people could be forced to leave the Sahel by the end of this century. On top of this quantification, the sea level rise impact over coastal areas has to be superimposed, implying that the Sahel population could be strongly at threat in case of rapid Greenland melting.


Assuntos
Mudança Climática/estatística & dados numéricos , Aquecimento Global/estatística & dados numéricos , Simulação por Computador , Congelamento , Água Doce , Groenlândia , Humanos , Camada de Gelo , Modelos Teóricos , Água do Mar , Fatores de Tempo , Movimentos da Água
4.
Proc Natl Acad Sci U S A ; 110(41): 16350-4, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24062437

RESUMO

Proxy data reveal the existence of episodes of increased deposition of ice-rafted detritus in the North Atlantic Ocean during the last glacial period interpreted as massive iceberg discharges from the Laurentide Ice Sheet. Although these have long been attributed to self-sustained ice sheet oscillations, growing evidence of the crucial role that the ocean plays both for past and future behavior of the cryosphere suggests a climatic control of these ice surges. Here, we present simulations of the last glacial period carried out with a hybrid ice sheet-ice shelf model forced by an oceanic warming index derived from proxy data that accounts for the impact of past ocean circulation changes on ocean temperatures. The model generates a time series of iceberg discharge that closely agrees with ice-rafted debris records over the past 80 ka, indicating that oceanic circulation variations were responsible for the enigmatic ice purges of the last ice age.


Assuntos
Mudança Climática , Camada de Gelo , Modelos Teóricos , Movimentos da Água , Oceano Atlântico , Simulação por Computador
5.
Proc Natl Acad Sci U S A ; 108(50): E1359-60, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22123946
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...